Saturday, November 8, 2025

Hindi PaJR consent form DPDP compliant

 सूचित रोगी सहमति और प्राधिकरण फॉर्म


डी-आईडेंटिफाइड केस रिपोर्ट साझाकरण के लिए (ई-लॉग / ऑनलाइन प्रकाशन)

1. साझाकरण का उद्देश्य

▢ मैं समझता हूं कि स्वास्थ्य पेशेवर मेरे अनामीकृत क्लिनिकल विवरण साझा कर सकते हैं, जिसमें प्रासंगिक इतिहास, जांच निष्कर्ष, रेडियोलॉजी या प्रयोगशाला छवियां, और उपचार विवरण शामिल हैं, शिक्षा, चर्चा और पेशेवर सहयोग के उद्देश्य से।

2. जानकारी की प्रकृति और अनामिकीकरण

▢ मेरी पहचान योग्य व्यक्तिगत जानकारी (जैसे नाम, संपर्क विवरण, पता, पहचान संख्या, या चेहरे की पहचान योग्य छवियां) साझा नहीं की जाएगी। केवल उल्लिखित उद्देश्य के लिए आवश्यक डी-आईडेंटिफाइड या अनामीकृत डेटा ही साझा किया जाएगा। मेरे डेटा को संभालने वाले स्वास्थ्य पेशेवर डिजिटल पर्सनल डेटा प्रोटेक्शन एक्ट, 2023, और संबंधित चिकित्सा नैतिकता तथा गोपनीयता मानकों का पालन करेंगे।

3. पुनः-पहचान का जोखिम

▢ मैं समझता हूं कि पूर्ण अनामिता को पूर्ण रूप से गारंटी नहीं दी जा सकती और केस से परिचित किसी व्यक्ति द्वारा मुझे या मेरे रिश्तेदार को पहचाने जाने की छोटी संभावना बनी रहती है।

4. प्रकाशन का दायरा और माध्यम 

मैं समझता हूं कि मेरी डी-आईडेंटिफाइड केस रिपोर्ट को तुरंत साझा या प्रकाशित किया जा सकता है:

▢ ऑनलाइन शैक्षणिक या पेशेवर चर्चा समूहों में (उदाहरण: व्हाट्सएप, फेसबुक, ब्लॉग, फोरम)

▢ मुद्रित या ऑनलाइन चिकित्सा पत्रिकाओं, शैक्षणिक वेबसाइटों, या संस्थागत रिपॉजिटरी में और जब भी वे पत्रिकाओं में प्रकाशित हों, मुझे सूचित किया जाएगा।

▢ अन्य शैक्षणिक या अनुसंधान प्लेटफॉर्मों में, लागू डेटा प्रोटेक्शन और पेशेवर मानकों के अनुपालन के अधीन।

5. डेटा प्रिंसिपल के अधिकार (डीपीडीपी एक्ट, 2023 के अनुसार)

मुझे सूचित किया गया है कि:

▢ प्रकाशन से पहले किसी भी समय इस सहमति को वापस लेने का अधिकार मुझे है, सहमति लेने वाले को लिखित या इलेक्ट्रॉनिक रूप से संपर्क करके।

▢ यदि कोई व्यक्तिगत पहचानकर्ता अनजाने में शामिल हो जाए, तो मेरे व्यक्तिगत डेटा तक पहुंचने, सुधारने या आगे साझाकरण को प्रतिबंधित करने का अधिकार मुझे है।

▢ मेरी जानकारी के उपयोग से संबंधित किसी भी चिंता या शिकायत के लिए संस्थान के नामित डेटा प्रोटेक्शन अधिकारी / शिकायत अधिकारी से संपर्क कर सकता हूं।

6. उपचार करने वाले चिकित्सक की भूमिका

▢ मैं समझता हूं कि ई-लॉग या ऑनलाइन चर्चा केवल शैक्षणिक और सहयोगी उद्देश्यों के लिए है और मेरे प्राथमिक चिकित्सक द्वारा दिए गए चिकित्सा सलाह या उपचार का स्थान नहीं लेती, जो मेरी क्लिनिकल देखभाल और निर्णयों के लिए जिम्मेदार रहते हैं। 

मैं समझता हूं कि मेरा डेटा एक टीम-आधारित लर्निंग प्लेटफॉर्म यानी PaJR.in के माध्यम से ऑनलाइन चर्चा किया जाएगा जहां कई ऑनलाइन उपयोगकर्ता मेरी स्वास्थ्य समस्याओं के समाधान खोजने के लिए सहयोग करेंगे और टीम अतीत से मेरे जैसे समान मेल खाने वाले रोगियों को खोजेगी जो लाभान्वित हुए हैं, साथ ही भविष्य में समान रोगियों के लिए मेरे डेटा का उपयोग कर लाभ पहुंचा सकती है।

7. भाषा और समझ

▢ इस सहमति का उद्देश्य और निहितार्थ मेरी समझने वाली भाषा में मेरे पास समझाया गया है। मुझे प्रश्न पूछने का अवसर दिया गया है, और मेरे सभी प्रश्नों का संतोषजनक उत्तर दिया गया है।

रोगी / अभिभावक / रिश्तेदार का नाम: ___________________________  
हस्ताक्षर: ___________________________  
तिथि: ___________________________  
रोगी से संबंध (यदि लागू हो): ___________________________

सहमति लेने वाले का नाम एवं पदनाम: ___________________________  
हस्ताक्षर: ___________________________  
तिथि: ___________________________

अनामीकृत पहचानकर्ता (यदि लागू हो): ___________________________  
संस्थान / पता: ___________________________  
मोबाइल नंबर: ___________________________

शिकायत / डेटा प्रोटेक्शन संपर्क: 

डॉ. आदित्य समितिनजय, PaJR CEO, aditya.samitinjay@nhs.netadityasam93@gmail.com

डॉ. सग्निका दास,  
वकील और रोगी अधिवक्ता, PaJR वॉलंटियर, sagnika.mtb10@gmail.com

प्रोफेसर राकेश बिस्वास, PaJR वॉलंटियर, rakesh7biswas@gmail.com

प्रोफेसर मारुति शर्मा, पब्लिक हेल्थ स्पेशलिस्ट, WA: +91 70138 31179

PaJR के बारे में अधिक: https://pajr.in/






PaJR Bengali consent form DPDP compliant

অনুমোদিত রোগী সম্মতি এবং অনুমোদন ফর্ম

ডি-আইডেন্টিফাইড কেস রিপোর্ট শেয়ারিংয়ের জন্য (ই-লগ / অনলাইন প্রকাশনা)

1. শেয়ারিংয়ের উদ্দেশ্য

▢ আমি বুঝতে পারছি যে স্বাস্থ্যসেবা পেশাদাররা আমার অ্যানোনিমাইজড ক্লিনিকাল বিবরণ, প্রাসঙ্গিক ইতিহাস, পরীক্ষার ফলাফল, রেডিওলজি বা ল্যাবরেটরি ছবি এবং চিকিত্সার বিবরণ সহ শেয়ার করতে পারেন, শিক্ষা, আলোচনা এবং পেশাদার সহযোগিতার উদ্দেশ্যে।

2. তথ্যের প্রকৃতি এবং অ্যানোনিমাইজেশন

▢ আমার পরিচয়যোগ্য ব্যক্তিগত তথ্য (যেমন নাম, যোগাযোগের বিবরণ, ঠিকানা, পরিচয় নম্বর বা মুখের ছবি যা চেনা যায়) শেয়ার করা হবে না। উল্লিখিত উদ্দেশ্যের জন্য প্রয়োজনীয় ডি-আইডেন্টিফাইড বা অ্যানোনিমাইজড ডেটা মাত্র শেয়ার করা হবে। আমার ডেটা পরিচালনাকারী স্বাস্থ্য পেশাদাররা ডিজিটাল পার্সোনাল ডেটা প্রটেকশন অ্যাক্ট, ২০২৩ এবং প্রাসঙ্গিক চিকিত্সা নীতি এবং গোপনীয়তা মানদণ্ড মেনে চলবেন।

3. পুনরায় পরিচয়ের ঝুঁকি

▢ আমি বুঝতে পারছি যে সম্পূর্ণ অ্যানোনিমিটি সম্পূর্ণভাবে নিশ্চিত করা যায় না এবং কেসটির সাথে পরিচিত কারো দ্বারা আমি বা আমার আত্মীয়কে চেনা যাওয়ার ছোট সম্ভাবনা রয়েছে।

4. প্রকাশনার পরিধি এবং মাধ্যম 

আমি বুঝতে পারছি যে আমার ডি-আইডেন্টিফাইড কেস রিপোর্ট অবিলম্বে শেয়ার বা প্রকাশ করা যেতে পারে:

▢ অনলাইন অ্যাকাডেমিক বা পেশাদার আলোচনা গ্রুপ (যেমন: হোয়াটসঅ্যাপ, ফেসবুক, ব্লগ, ফোরাম)

▢ প্রিন্টেড বা অনলাইন চিকিত্সা জার্নাল, শিক্ষামূলক ওয়েবসাইট বা প্রাতিষ্ঠানিক রিপোজিটরি এবং যখন তারা জার্নালে প্রকাশিত হবে তখন আমাকে জানানো হবে।

▢ অন্যান্য শিক্ষামূলক বা গবেষণা প্ল্যাটফর্ম, প্রযোজ্য ডেটা প্রটেকশন এবং পেশাদার মানদণ্ড মেনে চলার অধীনতায়।

5. ডেটা প্রিন্সিপালের অধিকার (ডিপিডিপি অ্যাক্ট, ২০২৩ অনুসারে)

আমাকে জানানো হয়েছে যে:

▢ প্রকাশনার আগে যেকোনো সময় আমার এই সম্মতি প্রত্যাহার করার অধিকার আছে, সম্মতি গ্রহণকারীকে লিখিত বা ইলেকট্রনিকভাবে যোগাযোগ করে।

▢ যদি কোনো ব্যক্তিগত পরিচয়কারী অপ্রত্যাশিতভাবে অন্তর্ভুক্ত হয়, তাহলে আমার ব্যক্তিগত ডেটায় অ্যাক্সেস, সংশোধন বা আরও শেয়ারিং সীমাবদ্ধ করার অধিকার আছে।

▢ আমার তথ্যের ব্যবহার সম্পর্কিত কোনো উদ্বেগ বা অভিযোগের জন্য প্রাতিষ্ঠানের নির্ধারিত ডেটা প্রটেকশন অফিসার / গ্রিভ্যান্স অফিসারের সাথে যোগাযোগ করতে পারি।

6. চিকিত্সাকারী চিকিত্সকের ভূমিকা

▢ আমি বুঝতে পারছি যে ই-লগ বা অনলাইন আলোচনা শুধুমাত্র শিক্ষামূলক এবং সহযোগিতামূলক উদ্দেশ্যে এবং আমার প্রাইমারি চিকিত্সকের চিকিত্সা পরামর্শ বা চিকিত্সার পরিবর্তে নয়, যিনি আমার ক্লিনিকাল যত্ন এবং সিদ্ধান্তের জন্য দায়ী থাকবেন। 

আমি বুঝতে পারছি যে আমার ডেটা একটি টিম-ভিত্তিক লার্নিং প্ল্যাটফর্ম যেমন পাজেআর.ইন-এর মাধ্যমে অনলাইনে আলোচিত হবে যেখানে অনেক অনলাইন ব্যবহারকারী আমার স্বাস্থ্য সমস্যার সমাধান খুঁজতে সহযোগিতা করবে এবং টিম অতীতের অনুরূপ মিলে যাওয়া রোগীদের খুঁজে বের করবে যারা উপকৃত হয়েছে এবং ভবিষ্যতে অনুরূপ রোগীদের জন্য আমার ডেটা ব্যবহার করে উপকার করতে পারে।

7. ভাষা এবং বোঝাপড়া

▢ এই সম্মতির উদ্দেশ্য এবং প্রভাব আমার বোঝার ভাষায় ব্যাখ্যা করা হয়েছে। আমাকে প্রশ্ন করার সুযোগ দেওয়া হয়েছে এবং আমার সব প্রশ্নের সন্তোষজনক উত্তর দেওয়া হয়েছে।

রোগী / অভিভাবক / আত্মীয়ের নাম: ___________________________  
স্বাক্ষর: ___________________________  
তারিখ: ___________________________  
রোগীর সাথে সম্পর্ক (যদি প্রযোজ্য হয়): ___________________________

সম্মতি গ্রহণকারীর নাম ও পদবী: ___________________________  
স্বাক্ষর: ___________________________  
তারিখ: ___________________________

অ্যানোনিমাইজড আইডেন্টিফায়ার (যদি প্রযোজ্য হয়): ___________________________  
প্রাতিষ্ঠান / ঠিকানা: ___________________________  
মোবাইল নম্বর: ___________________________

অভিযোগ / ডেটা প্রটেকশন যোগাযোগ: 

ড. অদিত্য সমিতিনজয়, পাজেআর সিইও, aditya.samitinjay@nhs.netadityasam93@gmail.com

ড. সগনিকা দাস,  
আইনজীবী এবং রোগী অ্যাডভোকেট, পাজেআর ভলান্টিয়ার, sagnika.mtb10@gmail.com

প্রফেসর রাকেশ বিশ্বাস, পাজেআর ভলান্টিয়ার, rakesh7biswas@gmail.com

প্রফেসর মারুথি শর্মা, পাবলিক হেলথ স্পেশালিস্ট, WA: +91 70138 31179

পাজেআর সম্পর্কে আরও: https://pajr.in/




Original English version: 


Informed Patient Consent and Authorization Form

For Sharing of De-Identified Case Report (E-Log / Online Publication)

1. Purpose of Sharing

▢ I understand that healthcare professionals may share my anonymized clinical details, including relevant history, examination findings, radiology or laboratory images, and treatment details, for the purpose of education, discussion, and professional collaboration.

2. Nature of Information and Anonymization

▢ My identifiable personal information (such as name, contact details, address, identification numbers, or facially recognizable images) will not be shared. Only de-identified or anonymized data necessary for the stated purpose will be shared. The health professionals handling my data will comply with the Digital Personal Data Protection Act, 2023, and relevant medical ethics and privacy standards.

3. Risk of Re-identification

▢ I understand that complete anonymity cannot be absolutely guaranteed and that there remains a small possibility that I or my relative may be identified by someone familiar with the case.

4. Scope and Medium of Publication 

I understand that my de-identified case report may be immediately shared or published in:

▢ Online academic or professional discussion groups (e.g., WhatsApp, Facebook, blogs, forums)

▢ Printed or online medical journals, educational websites, or institutional repositories and i shall be informed whenever they are published in journals.

▢ Other educational or research platforms, subject to compliance with applicable data protection and professional standards.

5. Rights of the Data Principal (as per DPDP Act, 2023)

I have been informed that:

▢ I have the right to withdraw this consent at any time before publication, by contacting the consent taker in writing or electronically.

▢ I have the right to access, correct, or restrict further sharing of my personal data, if any personal identifiers are inadvertently included.

▢ I can contact the designated Data Protection Officer / Grievance Officer of the institution for any concerns or grievances related to the use of my information.


6. Role of Treating Physician

▢ I understand that the E-log or online discussion is for educational and collaborative purposes only and does not replace medical advice or treatment by my primary physician, who remains responsible for my clinical care and decisions. 

I understand that my data will be discussed online through a team based learning platform aka PaJR.in where many online users will collaborate to find solutions for my health problems and the team will find similar matching patients like me from the past who have benefited as well as utilise my data for similar patients in future who can benefit.


7. Language and Understanding

▢ The purpose and implications of this consent have been explained to me in a language I understand. I have been given an opportunity to ask questions, and all my queries have been satisfactorily answered.

Name of Patient / Guardian / Relative: ___________________________
Signature: ___________________________
Date: ___________________________
Relationship to Patient (if applicable): ___________________________

Name & Designation of Consent Taker: ___________________________
Signature: ___________________________
Date: ___________________________

Anonymized Identifier (if applicable): ___________________________
Institution / Address: ___________________________
Mobile No.: ___________________________

Grievance / Data Protection Contact: 

Dr Aditya Samitinjay, PaJR CEO,  aditya.samitinjay@nhs.netadityasam93@gmail.com

Dr Sagnika Das,
Lawyer and patient advocate, PaJR volunteer, sagnika.mtb10@gmail.com

Professor Rakesh Biswas, PaJR volunteer, rakesh7biswas@gmail.com

Professor Maruthi Sharma, Public health specialist, WA: +91 70138 31179

More about PaJR: https://pajr.in/

PaJR Telugu consent form DPDP compliant

డీ-ఐడెంటిఫైడ్ కేస్ రిపోర్ట్ భాగస్వామ్యం కోసం (ఇ-లాగ్ / ఆన్‌లైన్ ప్రచురణ)


1. భాగస్వామ్య ప్రయోజనం

▢ వైద్య సంరక్షణ నిపుణులు నా అనామక వైద్య వివరాలను, సంబంధిత చరిత్ర, పరీక్ష ఫలితాలు, రేడియాలజీ లేదా ప్రయోగశాల చిత్రాలు మరియు చికిత్స వివరాలతో కలిపి, విద్య, చర్చ మరియు వృత్తిపరమైన సహకారం కోసం భాగస్వామ్యం చేయవచ్చని నేను అర్థం చేసుకున్నాను.

2. సమాచార స్వరూపం మరియు అనామకీకరణ

▢ నా గుర్తింపు వ్యక్తిగత సమాచారం (పేరు, సంప్రదింపు వివరాలు, చిరునామా, గుర్తింపు సంఖ్యలు లేదా ముఖం గుర్తించగల చిత్రాలు వంటివి) భాగస్వామ్యం చేయబడదు. పేర్కొన్న ప్రయోజనం కోసం అవసరమైన డీ-ఐడెంటిఫైడ్ లేదా అనామకీకరించిన డేటా మాత్రమే భాగస్వామ్యం చేయబడుతుంది. నా డేటాను నిర్వహించే ఆరోగ్య నిపుణులు డిజిటల్ వ్యక్తిగత డేటా రక్షణ చట్టం, 2023 మరియు సంబంధిత వైద్య నీతి మరియు గోప్యత ప్రమాణాలకు అనుగుణంగా వ్యవహరిస్తారు.

3. మళ్లీ గుర్తింపు ప్రమాదం

▢ పూర్తి అనామకత్వం పూర్తిగా హామీ ఇవ్వబడదని మరియు కేస్‌తో పరిచయం ఉన్న వారిచే నేను లేదా నా బంధువు గుర్తించబడే చిన్న అవకాశం ఉందని నేను అర్థం చేసుకున్నాను.

4. ప్రచురణ పరిధి మరియు మాధ్యమం 

నా డీ-ఐడెంటిఫైడ్ కేస్ రిపోర్ట్ వెంటనే భాగస్వామ్యం లేదా ప్రచురణ అవవచ్చని నేను అర్థం చేసుకున్నాను:

▢ ఆన్‌లైన్ అకడమిక్ లేదా వృత్తిపరమైన చర్చా గ్రూపులు (ఉదా: వాట్సాప్, ఫేస్‌బుక్, బ్లాగులు, ఫోరమ్‌లు)

▢ ముద్రిత లేదా ఆన్‌లైన్ వైద్య జర్నల్స్, విద్యా వెబ్‌సైట్‌లు, లేదా సంస్థాగత రిపాజిటరీలు మరియు అవి జర్నల్స్‌లో ప్రచురించబడినప్పుడు నాకు తెలియజేయబడుతుంది.

▢ వర్తించే డేటా రక్షణ మరియు వృత్తిపరమైన ప్రమాణాలకు అనుగుణంగా ఇతర విద్య లేదా పరిశోధన ప్లాట్‌ఫారమ్‌లు.

5. డేటా ప్రిన్సిపల్ హక్కులు (DPDP చట్టం, 2023 ప్రకారం)

నాకు తెలియజేయబడింది:

▢ ప్రచురణకు ముందు ఏ సమయంలోనైనా, సమ్మతి తీసుకున్న వ్యక్తిని వ్రాతపూర్వకంగా లేదా ఎలక్ట్రానిక్‌గా సంప్రదించడం ద్వారా ఈ సమ్మతిని ఉపసంహరించుకునే హక్కు నాకు ఉంది.

▢ ఏదైనా వ్యక్తిగత గుర్తింపుదారులు అనుకోకుండా చేర్చబడితే, నా వ్యక్తిగత డేటాను యాక్సెస్ చేయడం, సరిదిద్దడం లేదా మరింత భాగస్వామ్యాన్ని పరిమితం చేయడం వంటి హక్కులు నాకు ఉన్నాయి.

▢ నా సమాచారం ఉపయోగానికి సంబంధించిన ఏదైనా ఆందోళనలు లేదా ఫిర్యాదుల కోసం సంస్థ యొక్క నియమిత డేటా ప్రొటెక్షన్ ఆఫీసర్ / గ్రీవెన్స్ ఆఫీసర్‌ను నేను సంప్రదించవచ్చు.

6. చికిత్స వైద్యుని పాత్ర

▢ ఈ ఇ-లాగ్ లేదా ఆన్‌లైన్ చర్చ కేవలం విద్య మరియు సహకార ప్రయోజనాల కోసం మాత్రమే అని మరియు నా ప్రాథమిక వైద్యుడి వైద్య సలహా లేదా చికిత్సను భర్తీ చేయదని నేను అర్థం చేసుకున్నాను, వారు నా వైద్య సంరక్షణ మరియు నిర్ణయాలకు బాధ్యత వహిస్తారు. 

నా డేటా PaJR.in అనే టీమ్ బేస్డ్ లెర్నింగ్ ప్లాట్‌ఫారమ్ ద్వారా ఆన్‌లైన్‌లో చర్చ చేయబడుతుందని నేను అర్థం చేసుకున్నాను, ఇక్కడ అనేక ఆన్‌లైన్ యూజర్లు నా ఆరోగ్య సమస్యలకు పరిష్కారాలు కనుగొనడానికి సహకరిస్తారు మరియు టీమ్ నా లాంటి సారూప్య మ్యాచింగ్ రోగులను గతం నుండి కనుగొంటుంది ఎవరు ప్రయోజనం పొందారు అలాగే భవిష్యత్తులో సారూప్య రోగులకు నా డేటాను ఉపయోగించి ప్రయోజనం పొందగలవారు.

7. భాష మరియు అవగాహన

▢ ఈ సమ్మతి యొక్క ప్రయోజనం మరియు పరిణామాలు నాకు అర్థమయ్యే భాషలో వివరించబడ్డాయి. ప్రశ్నలు అడిగే అవకాశం నాకు ఇవ్వబడింది మరియు నా అన్ని ప్రశ్నలకు సంతృప్తికరమైన సమాధానాలు ఇవ్వబడ్డాయి.

రోగి / సంరక్షకుడు / బంధువు పేరు: ___________________________
సంతకం: ___________________________
తేదీ: ___________________________
రోగితో సంబంధం (వర్తించినట్లయితే): ___________________________

సమ్మతి తీసుకున్న వ్యక్తి పేరు మరియు హోదా: ___________________________
సంతకం: ___________________________
తేదీ: ___________________________

అనామక గుర్తింపుదారి (వర్తించినట్లయితే): ___________________________
సంస్థ / చిరునామా: ___________________________
మొబైల్ నంబర్: ___________________________

ఫిర్యాదు / డేటా రక్షణ సంప్రదింపు: 

డాక్టర్ ఆదిత్య సమితిన్జయ్, PaJR CEO,  aditya.samitinjay@nhs.netadityasam93@gmail.com

డాక్టర్ సగ్నికా దాస్,
లాయర్ మరియు రోగి అడ్వొకేట్, PaJR వాలంటీర్, sagnika.mtb10@gmail.com

ప్రొఫెసర్ రాకేష్ బిశ్వాస్, PaJR వాలంటీర్, rakesh7biswas@gmail.com

ప్రొఫెసర్ మారుతి శర్మా, పబ్లిక్ హెల్త్ స్పెషలిస్ట్, WA: +91 70138 31179

PaJR గురించి మరింత: https://pajr.in/]


*De-Identified Case Report Bhaagaswaamyam Kosam (E-log / Online Prachuran)*

1. *Bhaagaswaamya Prayojanam*

▢ Vaidya samrakshana nipunulu naa anaamaka vaidya vivaralu, sambandhita charitra, pariksha phalitaalu, radiology leda prayogashaala chitraalu mariyu chikitsa vivaralato kalipi, vidya, charcha mariyu vruttiparamaina sahakaaram kosam bhaagaswaamyam cheyyavachani nenu ardham chesukunnaanu.

2. *Samaachara Swaroopam mariyu Anaamakeekarana*

▢ Naa gurthimpu vyaktigata samaachaaram (peru, sampradincha vivaralu, chirunama, gurthimpu sankhyalu leda mukham gurthinchagalige chitraalu lantivi) bhaagaswaamyam cheyyabadavu. Perukonna prayojanam kosam avasaramaina de-identified leda anaamakeekarimpa badina data maathrame bhaagaswaamyam cheyyabadutundi. Naa dataanu nirvahinchē aarogya nipunulu Digital Vyaktigata Data Rakshana Chattam, 2023 mariyu sambandhita vaidya neeti mariyu gopyata pramaanaalaku anugunanga vyavaharisthaaru.

3. *Malli Gurthimpu Pramaadam*

▢ Poorthi anaamakatvam poorthiga haami ivvabadadani mariyu case-to parichayam unna vaariche nenu leda naa bandhuvu gurthimpa badey chinna avakaasham undani nenu ardham chesukunnaanu.

4. *Prachurana Paridhi mariyu Maadhyamam*

Naa de-identified case report ventane bhaagaswaamyam leda prachuran avvavachani nenu ardham chesukunnaanu:

▢ Online academic leda vruttiparamaina charcha groupulu (udaaharanaki: WhatsApp, Facebook, blogs, forums)

▢ Mudrita leda online vaidya journals, vidya websites, leda samsthaagata repositories mariyu avi journals-lo prachurimpa badinaappudu naaku teliyajeyabadutundi.

▢ Vartinche data rakshana mariyu vruttiparamaina pramaanaalaku anugunanga itara vidya leda parishodhana platforms.

5. *Data Principal Hakkulu (DPDP Chattam, 2023 prakaaram)*

Naaku teliyajeyabadindi:

▢ Prachuranaku mundu ye samayamaina, sammathi teesukonna vyaktini vraatapoorvakaanga leda electronic-ga sampradinchadam dvara ee sammathini upasamharinchē hakku naaku undi.

▢ Edaina vyaktigata gurthimpudaarulu anukokunda cherabadite, naa vyaktigata dataanu access cheyyadam, sarididdadam leda marinta bhaagaswaamyamni parimitam cheyyadam lantivi hakku naaku unnayi.

▢ Naa samaachaaram upayogaaniki sambandhinchina edaina aandolanalu leda phiryaadulaku samstha yokka niyamit data protection officer / grievance officer-ni nenu sampradinchavachhu.

6. *Chikitsa Vaidyuni Paathra*

▢ Ee e-log leda online charcha kevalam vidya mariyu sahakaara prayojanaalaku maathrame ani mariyu naa prathamik vaidyudi vaidya salahaa leda chikitsanu bhartee cheyyadani nenu ardham chesukunnaanu, vaaru naa vaidya samrakshana mariyu nirnayaalaku baadhyata vahistaaru.

Naa data PaJR.in ane team-based learning platform dvara online-lo charcha cheyyabadutundani nenu ardham chesukunnaanu, ikkada aneka online users naa aarogya samasyaalaki pariskaaralu kanugonataniki sahakaristhaaru mariyu team naa lantiva saarupya matching rogilanu gatham nunchi kanugontundi evaru prayojanam pondaaru alage bhavishyatlo saarupya rogilaku naa dataanu upayoginchi prayojanam pondagalavaru.

7. *Bhaasha mariyu Avagahana*

▢ Ee sammathi yokka prayojanam mariyu parinaamaalu naaku ardhamayye bhaashalo vivarimpa badayi. Prashnalu adige avakaasham naaku ivvadam jarigindi mariyu naa anni prashnalaku santripti karamainavi samadhaanalu ivvadam jarigindi.

---

*Rogi / Samrakshakudu / Bandhuvu Peru:* ___________________________
*Signature:* ___________________________
*Date:* ___________________________
*Rogitho Sambandham (vartinchinatlaithe):* ___________________________

*Sammathi Theesukonna Vyakti Peru mariyu Hoda:* ___________________________
*Signature:* ___________________________
*Date:* ___________________________

*Anaamaka Gurthimpudaari (vartinchinatlaithe):* ___________________________
*Samstha / Chirunama:* ___________________________
*Mobile Number:* ___________________________

*Phiryaadu / Data Rakshana Sampradincha:*



Monday, November 3, 2025

Illustration of AI driven automation of online meetings into detailed notes or overviews for asynchronous consumption and archival




AI driven human edited meeting Notes with health-quant team and https://pajr.in/ on 8/9/25, 10:00AM:


Meeting Overview:


Ecskin health-quant team: Skin irritation from the glucose monitoring device shows minimal impact, with 8-subject study indicating aloe vera's effectiveness, though long-term use may pose risks.


Phase two strategy favors a DIY approach by training school children to apply the paste; ethical clearance from review boards is essential before advancing to human trials.


Sensor development is nearing completion; decision required on whether to proceed with partial clinical validation or await full prototype.


Clinical trials will commence with blood sugar monitoring; cortisol measurement will follow once the full prototype is ready.


PaJR team rep: highlighted that mainstream validation requires 500+ participants, suggesting initial pilot studies with 30 samples for feasibility assessment.


Resource allocation should start conservatively with 1-2 dedicated personnel to gather initial data and build from day-to-day experiences.


Ethical clearance process must prioritize human trials with diabetic patients, as animal trials do not correlate as effectively for this device.


PaJR team rep said their current user driven patient monitoring system integrates energy inputs and outputs, enhancing data for device validation.


Health-Quant Team consists of 5 members, including 3 PhD students aiming for academic roles; resource constraints limit potential collaboration visits.


Plans to establish connections with health informatics professionals in Taiwan to explore local networking opportunities for project support using PaJR team rep's network there.


Publicly available full text around the tech:


https://dl.acm.org/doi/10.1145/3613904.3642232#:~:text=Abstract,deployed%20for%20various%20interactive%20applications.

Saturday, November 1, 2025

All visuals for AI in Decision Making for User-Driven human centered Healthcare: Explainability and Trust


The session content below is arranged as a series of visuals with Socratic cues and links to complex, messy, conversational, TLDR answers that may have been the speaker's thoughts in the past. The speaker is likely to just use those visuals to convey his thoughts extempore from whatever comes to his mind at that moment, likely influenced by his past thoughts but the session is unlikely to be exactly the same as what is represented here. These have been shared in advance to reduce lecture time and increase interaction time with this learning session participants.


Never doubt that a small group of thoughtful committed individuals can change the world. In fact, it's the only thing that ever has."



Counterview to above in the link below illustrates the broader meaning of cision and de-cision (expanded again further down): https://www.ohiocitizen.org/about_that_margaret_mead_quotation


Introduction 




to our team and human centered clinical decision making lab who regularly try to integrate medical education theory with practice in the hope of generating learning outcomes that can positively influence the patient illness outcomes around whom this team based learning is centered: 

 



Why is a global clinical decision making team called "Narketpally syndrome?"


generated from a rhetorical editorial: https://pubmed.ncbi.nlm.nih.gov/40674544/

More complex, messy rhetorical TLDR around our team and it's workflow: https://medicinedepartment.blogspot.com/2025/11/visual-1-flipped-session-content-for.html?m=1

Session learning Goals:

Short term?

Long term?

Objectives?

Creativity

Human centred management 

Methodology: 

Hands on interactive




Evolution of clinical decision making 

pre and post AI







What is cognition?


What is dual processing theory of cognition?


What is decision?


Word picture:

Imagine you are "Cutting a vegetable with a knife" and imagine what is the next step in your cooking once cutting is over?



Image with CC licence: https://commons.m.wikimedia.org/wiki/File:Sickle_and_throwing_knife_at_Manchester_Museum.jpg#mw-jump-to-license

And the image of the sickle and science is contained in an important writing tool for science as a question mark symbol , which is a very important cognitive cutting instrument of scientific scepticism:



Creative commons license: https://en.m.wikipedia.org/wiki/Question_mark#/media/File%3AQuestion_opening-closing.svg


To reach a de cision is to stop cutting and stop questioning further! As in de addiction or de escalation, which means to stop addiction or stop escalation!

In other words going with the cutting edge pictorial cooking analogy above, one simply moves to the next phase of cooking once the cutting of it's ingredients is over.

What is intelligence?





Animal intelligence vs plant cognition?



What was clinical decision making like in the pre AI LLM era just few years back?

Video demo of our patient centered, clinical decision making lab: 

Recent re-upload:

https://youtu.be/ZKoljY2UBHI?si=UYUfpTD7JGOgoQhA

Original upload presented during the medical education conference in AIIMS, Bhuvaneshwar Jan 2020:

https://youtu.be/xvE5b8Xk3vM?si=dqDlPQgA_EP2L7zT


Video demo of a single patient's decision making: 


https://youtu.be/csF8VQbOYRo?si=mlbHXIyD5A-29uqf


What is it like now?


Hands on demonstration of human clinical decision making with AI in the loop:




Is it AI in the loop or humans in the loop?


Image CC licence: https://commons.m.wikimedia.org/wiki/File:Rock_Shelter_8,_Bhimbetka_02.jpg#mw-jump-to-license

Rhetoric: Human animals invented AI beginning with asynchronous intelligence through their ability to use cave painting tech to convert multidimensional real life data into two dimensional data in an xy axis cave wall that later evolved to paper and electronic media so that they could eventually manage their lives better as artistic modelling was easier in a two dimensional virtual plane than a multi dimensional real plane?

Unquote: https://userdrivenhealthcare.blogspot.com/2025/08/udlco-crh-reducing-multidimensional.html?m=1




A layered approach to clinical decision making: 


We are all apprentices in a craft where no one ever becomes a master.
Ernest Hemingway, The Wild Years

Human, Scientific and Machine layers :


Anatomy of cognitive layers:







Physiology of cognitive layers in clinical decision making: enter Bloom's taxonomy!


RUAAEC
ApRUAECAp

More complex TLDR rhetoric along with team member attribution for the decision tree diagram as well as copyright attribution for the Bloom's diagram here: https://medicinedepartment.blogspot.com/2025/11/visual-6layered-approach-to-clinical.html?m=1

Human clinical decision making with AI in the loop:

The human layer and Ux interface

  • "Sometimes the smallest things take the most room in your heart." —
  • Winnie the Pooh
  • Above was Winnie the Pooh translating the Chandogya Upanishad:
  • छान्दोग्य उपनिषद् ८.१.३*

    अथ य एषोऽणिमैतदात्म्यमिदं सर्वम्।
    तत् सत्यम्। स आत्मा। तत् त्वम् असि श्वेतकेतो इति।

How do we deidentify as per HIPAA, the entire data that is captured into our system 2 healthcare data processing ecosystem?

Can missing the smallest things sometimes take up the most room in our workflow?

Are the smallest things, sometimes the smallest pieces in the puzzle, most rewarding in terms of learning and illness outcomes?

Is the work of AI LLMs as just a machine translator in our multilingual workflow small enough?







Consent form: Machine translation provides an added feature to our informed patient consent form that allows a single click translation to any global language!


Let me know if the konkani seems right!

In case it's not we have a manual back up here used routinely for majority of our patients: 


The above is one layer of explainability and raising awareness about patient rights including right to privacy.

Assignment: Get your LLMs to go through the consent forms linked above and check if they are DPDP compliant and if not ask for a better draft of the above consent form to make it DPDP compliant.


Daily events in clinical decision making 
and 
visual data capture and representation 
to 
generate quick human insights and prevent TLDR



In a human centered learning ecosystem, with AI in the loop, manual translation is more common?


Above is a layer of manual human to human translation as well as intermittent problems in an otherwise complex patient with comorbidities (will discuss again in the next layer of AI driven analysis)




Again this patient does have comorbidities related to his metabolic syndrome such as heart failure but then intermittent simple human requirements of explainability manifest in his daily sharing through his advocate such as the one here that manifests in his sleep and meta AI helps not just to translate it but also explain it well.

The role of AI driven infographics in explainability:






Speaker's thoughts: A picture speaks more than a thousand words?

A video can be time consuming though!

Assignment: Ask your LLMs to gather all the patient data from the case report linked above and rearrange it using AI driven removal of exactly dated time stamps and replacement with unidentifiable event timelines comprising labels such as Day 1,n season of year 1,n.





This patient is an example how human simple explainability backed by scientific evidence can provide a new lease of life to a patient of myocardial infarction who travelled the long distance to our college just for that explainability to strengthen his prior trust in us!

Past published work on similar patient: 


LLM textual explanation followed by translation and then text to voice file for the patient's advocate who like most of us also suffers from TLDR:





Above demonstrates AI driven support for insulin dose calculation through human learning around carb counting, accounting for insulin correction or sensitivity factor and insulin to carb ratios to decide the total insulin pre meal dose with scientific accuracy.

Are we micromanaging or overfitting?

The Scientific analytical cutting layer:



What is the sensitivity, specificity of a CT abdomen in a woman with chronic mild intermittent regular pain abdomen and a vague lump in her abdomen?




Are most drug efficacies simply of marginal benefit to patients?


Individual clinical decision making around antibiotic choices anecdote:


Fever chart 

"@⁨Meta AI⁩ Update:
Reviewed the history and it does look like she began with right lower limb cellulitis and then went on to develop heart failure as similar to our ProJR here: @⁨hu1 and then currently she appears to be having nosocomial sepsis and I'm not sure how she grew klebsiella in her blood culture at the day of admission before she was escalated here on piptaz @⁨hu3 please share her deidentified blood culture report.

Unquoted from:


Global clinical decision making around antibiotic choices anecdote:




"It's 3 AM. You're staring at a febrile patient with suspected sepsis. Culture pending. Your hand hovers over the prescription pad. Piperacillin-tazobactam? Meropenem? The voice in your head whispers: "Go broad. Cover everything. Better safe than sorry."

You write for meropenem. Again.

Here's what that voice doesn't tell you, that, in doing so, you've just contributed to a crisis that's killing more people than you might save."


Unquoted above from the link below:

https://www.linkedin.com/pulse/tales-medical-practice-chapter-11-when-antibiotics-stop-kosuru-kknbc


And AI driven decision support for the whole patient:



Above from the static case report journal published version : 




Explainability, trust and layers of clinical decision making in pre and current AI LLM era:

EBM layer: This layer is the one our clinical decision making lab is largely engaged in although the other two layers are no less important.

We have already shared something around those in our previous demos particularly our two video links shared above.

Human layer: This is the most important layer where clinical decision making actually happens at multiple human stakeholder levels:

Below are recent examples of the limits of scientific explainability and it's effect on human trust.

How much Trust building can one achieve through Human clinical decision making with AI in the loop?



Human mistrust due to persistent uncertainty due to scientifically limited explainability ?


Images of subclinical hypothyroidism patient data:




Human full trust inspite of persistent uncertainty due to scientifically limited explainability 






Summary of current clinical decision making workflow:


So What? SWOT 


S

trengths: Human centred management, Creativity 


W

eaknesses : User Interface: Asynchronous, academic flatlands 


O

pportunities : Prelude to the symphony of Singularity 


T

hreats: TLDR, DPDP, micromanaging or overfitting?





And last but not the least!


Machine layers:

The machine algorithm will see you now?



Amazon "Help me Decide"!

👆 Quantitative AI driven clinical decision making is currently here?

Is this analogous to clinical decision making:

Key takeaways:


Amazon "Help Me Decide" uses AI to analyze your browsing history (patient's clinical history) and preferences (check out the word preferences in Sackett's classic definition of EBM) to recommend the right product (diagnostic and therapeutic, lab or imaging as well as pharmacological or non pharmacological therapy) for you with just one tap.



The tool helps customers pick the right product, quickly. 

(System 2 decision making fast tracked to system 1 and closer to tech singularity)?


Personalized recommendations include clear explanations of why a product is right for you based on your specific needs and preferences.

Personalized precision medicine with explainability to gain trust!

algorithms? 

Did patients consent to its use? 

Can we trace how a prediction was made, or who’s responsible when it’s wrong?

Unquoted from below:

https://www.linkedin.com/pulse/algorithm-see-you-now-balancing-ai-ethics-privacy-indian-katiyar-inwff?trk=feed_main-feed-card_reshare_feed-article-content



DPDP Act is — a national trust charter?


The Act’s intent isn’t to burden innovation; it’s to humanize it,?


It recognizes that in a connected nation, trust is infrastructure.

Unquoted from below:

https://www.linkedin.com/pulse/pulse-nation-rebuilding-public-trust-healthcare-dat-sujeet-katiyar-aqwgf?trk=feed_main-feed-card_reshare_feed-article-content

Rhetoric: https://medicinedepartment.blogspot.com/2025/11/visual-11-and-last-but-not-least.html?m=1

Is synthetic intelligence SI scarier than AI?




Is decision making a cyclical process?


“Language is needed because we don’t know how to communicate. When we know how to, by and by, language is not needed.”